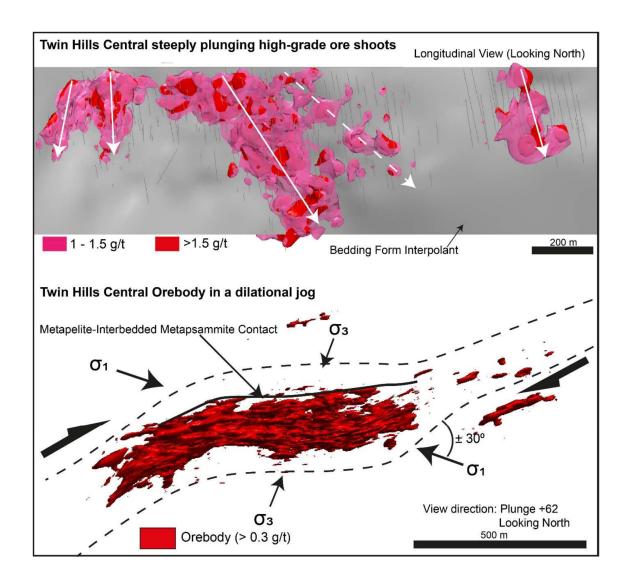


THE GEOLOGICAL SOCIETY OF NAMIBIA

cordially invites you to our


Talk title	Disseminated orogenic gold mineralization in high-grade metamorphic turbidites of the Central Zone of the Damara Belt, Namibia: controls and characteristics of the Twin Hills deposit
Ву	Josia Shilunga and Alexander Kisters, from Department of Earth Sciences, Stellenbosch University, South Africa
Date	Thursday, 30th of March
Time	17h45
VENUE	Auditorium of the Ministry of Mines

Abstract:

Disseminated orogenic gold mineralization in high-grade metamorphic turbidites of the Central Zone of the Damara Belt, Namibia: controls and characteristics of the Twin Hills deposit

Josia Shilunga and Alexander Kisters, from Department of Earth Sciences, Stellenbosch University,
South Africa

The recently discovered Twin Hills deposit is a large (>12 km strike length), disseminated, low-grade mineralized gold-sulfide (pyrrhotite > arsenopyrite >> pyrite) system hosted by amphibolite-grade metaturbidites of the Pan-African Damara Belt of central Namibia. The deposit comprises distinct clusters of economic-grade gold mineralization, measuring several hundred meters along strike, separated by several kilometer-long intervals of only sporadic and sub-economic gold grades. Individual higher-grade clusters are controlled by the combination and interplay of two main factors, namely lithological contacts and subtle deflections of bedding of the highly-strained, subvertical metaturbidites. The ENE-trending mineralized corridor of the Twin Hills deposit is largely confined to imbricated and/or tightly folded packages of interbedded metapsammites-metapelites within the otherwise metapelitedominated sequence. It is these units that promoted fracturing, fluid flow and the development of fine-scale vein networks as a result of pronounced strain partitioning between schist units (ductile) and interbedded metapsammites (brittle) during regional deformation (flexuralslip folding). Clusters (shoots) of higher-grade mineralization (>1.5 g/t Au) follow these main lithological contacts, but are laterally confined to subtle (5-15°) clockwise deflections of bedding (dilational jogs) from its regional ENE trends (see graphical abstract below). Outside these deflections, gold mineralization is patchy and only sub-economic. On a regional scale, the position of the Twin Hills deposit coincides with the inflection of the vergence direction of regional-scale firstorder folds. The structural and lithological controls of the mineralization at Twin Hills closely resemble those of orogenic gold deposits, but the fine-grained and dispersed textures of gold and associated sulfide mineralization are more reminiscent of those found in disseminated gold deposits.

